Creativity in Science and Mathematics Teaching in the Romanian Early Years Educational System

Dan Sporea and Adelina Sporea
National Institute for Laser, Plasma and Radiation Physics
Center for Science Education and Training
Str. Atomistilor 409, Magurele 077125, Romania
dan.sporea@inflpr.ro

The project CREATIVE LITTLE SCIENTISTS has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 289081.
Creative Little Scientists - Enabling Creativity through Science and Mathematics in Preschool and First Years of Primary Education

The project partners

The project CREATIVE LITTLE SCIENTISTS has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 289081.
Target group: children from 5 to 8 years old

Project partners: Belgium, Finland, France, Germany, Greece, Malta, Portugal, Romania, and the UK

Partners’ core competences:
• science and mathematics education in early childhood;
• creativity in education;
• cognitive psychology;
• comparative educational studies;
• teacher training.

Coordinator: Dr. Fani Stylianidou, Ellinogermaniki Agogi, Greece

The project CREATIVE LITTLE SCIENTISTS has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement nº 289081.
The project goals

• to evaluate the way creativity and science and mathematics teaching are inter-linked and conditioned as reflected by the European education policies;
• to analyze teachers’ perception and practice in relation to these subjects;
• to provide a comparative assessment of these issues among the nine participating countries;
• to propose guidelines, curricula and exemplary materials for relevant teacher training in various European contexts.
Tools used

- literature review on inquiry-based teaching and learning, creativity, science and mathematics teaching in Early Education;
- teachers on-line survey;
- focus groups stakeholders;
- filed research in education institutions (pre-schools and primary schools).
In the frame of the “Creative Little Scientists” project we run a survey at national level in relation to teachers perceptions on the links existing between science and mathematics teaching, creativity development and inquiry-based teaching and learning.

The project CREATIVE LITTLE SCIENTISTS has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement nº 289081.
Romanian educational system

The backbone of the research is represented by the “Conceptual Framework” set by the project team with the main focus on two major components of basic questions:

a) approaches to teaching, learning and assessment (rationale or vision; aims and objectives; content; learning activities; teacher role/location; materials and resources; groupings; time; assessment);

b) approaches to teacher education (initial teacher education; continuing professional development).
the Romanian education system had undergone important changes as a new Law of National Education was promoted (2011) and came into effect.

according to this Law, a pre-school preparatory class was added to the primary school education and a new vision on Early Education emerged.

a new paradigm of teaching and learning in early years is promoted, shifting from knowledge transfers and reproduction towards understanding of the surrounding world, development of key competences, active participation of the leaner, individual learning planning, inter-disciplinary approach, applied mathematics, formative assessment.
Online survey based on a questionnaire designed and recommended by the project coordinator and agreed with partners.
The survey was active between 20.05.2012 and 30.06.2012.
During the survey run one call for participation was launched on 17.05.2012.
Over the survey lifetime, 270 teachers enrolled to the survey, while only 258 answered all questions.
Data gathering was organized by using the “Monkey Survey” site. Participants had to answer 44 questions organized in 7 sections. The estimated time required to complete the task was one hour and a half.
Based on the survey a national Report was prepared. This Report facilitates comparison between existing approaches in real practice and their illustration in public policy documents and described in Deliverable D3.2 - **Report on Mapping and Comparing Recorded Practices**, towards the synthesis of the **Comparative Report** (D3.4).
Groups of participants

- teachers participating to national and European projects coordinated by Center for Science Education and Training – CSET;
- former attendees to courses delivered by CSET on inquiry-based science education (IBSE);
- teachers involved in various science related activities (Science Days, science fairs, contests for children, conferences and symposia);
- members of the National Primary School Teachers Association;
- participants to a national action focused on combating early years school abandon.
Ethical issues

• Participants’ identity to the survey is not disclosed in this study.
• Data provided by the participants are used only for research and statistical purposes.
• The Institute is registered to the National Supervisory Authority for Personal Data Processing as a personal data controller under No. 15407.
• By registering on the “Monkey Survey” site, the participants consented to voluntary participation.
Analysis

• In the case of single answer per question, data are reported as a percentage of the total number of respondents to that particular question.

• In the case of questions to which participants can select several options the reporting takes the form of number of responses.

• The analysis of the participants feedback is done either for the highest rank (e.g. “very often”, “strongly agree”) or, according to the case, considering the combined results of the highest ranks (e.g. “quite often and very often”, “agree and strongly agree”).

• From all the 40 questions we selected for this study only three questions with close links to creativity.
“How often do you use the following learning/teaching contexts and approaches in your SCIENCE teaching?”

<table>
<thead>
<tr>
<th>Learning/Teaching Contexts and Approaches</th>
<th>Approaches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open/unstructured play</td>
<td>Building on children own experience</td>
</tr>
<tr>
<td>Role/Pretend play</td>
<td>Encouraging different ways of recording</td>
</tr>
<tr>
<td>Drama</td>
<td>Encouraging problem finding</td>
</tr>
<tr>
<td>Teaching science from stories</td>
<td>Encouraging problem solving</td>
</tr>
<tr>
<td>Using history to teach science</td>
<td>Encouraging children to try out their own ideas</td>
</tr>
<tr>
<td>Working in small groups</td>
<td>Fostering classroom discussion</td>
</tr>
<tr>
<td>Physical exploration of materials</td>
<td>Fostering imagination</td>
</tr>
<tr>
<td>Using outdoor learning activities</td>
<td>Relating science with every day life</td>
</tr>
<tr>
<td>Taking children on field trips</td>
<td>Using questioning</td>
</tr>
<tr>
<td>Integrating science with other curricular areas</td>
<td>Using digital technologies</td>
</tr>
<tr>
<td>Fostering autonomous learning</td>
<td></td>
</tr>
</tbody>
</table>
a. Open/unstructured play
b. Role/Pretend play
c. Drama
d. Teaching science from stories
e. Using history to teach science (e.g. transport, the work of scientists)
f. Working in small groups
g. Physical exploration of materials
h. Using outdoor learning activities
i. Taking children on field trips and/or visits to science museums and industry
j. Integrating science with other curricular areas
k. Building on children’s prior experiences
l. Fostering collaboration
m. Encouraging different ways of recording and expressing ideas – oral, visual, digital, practical
n. Encouraging problem-finding – e.g. children asking questions
o. Encouraging problem solving – e.g. children solving practical tasks
p. Encouraging children to try out their own ideas in investigations
q. Fostering classroom discussion and evaluation of alternative ideas
r. Fostering imagination
s. Relating science to everyday life
t. Using questioning as a tool in science teaching
u. Using digital technologies with children for science teaching and learning
v. Fostering autonomous learning

The project CREATIVE LITTLE SCIENTISTS has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 289081.
“Which of the contexts mentioned below do you consider as MOST LIKELY to contribute to the development of children’s CREATIVITY?”

<table>
<thead>
<tr>
<th>Open/unstructured play</th>
<th>Working in small groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role/Pretend play</td>
<td>Physical exploration of materials</td>
</tr>
<tr>
<td>Drama</td>
<td>Using outdoor learning activities</td>
</tr>
<tr>
<td>Teaching science from stories</td>
<td>Taking children on field trips</td>
</tr>
<tr>
<td>Using history to teach science</td>
<td>Integrating science with other curricular areas</td>
</tr>
</tbody>
</table>
Choose up to 3 answers

- a. Open/unstructured play
- b. Role/Pretend play
- c. Drama
- d. Teaching science from stories
- e. Using history to teach science (e.g. transport, the work of scientists)
- f. Working in small groups
- g. Physical exploration of materials
- h. Using outdoor learning activities
- i. Taking children on field trips and/or visits to science museums and industry
- j. Integrating science with other curricular areas

The project CREATIVE LITTLE SCIENTISTS has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 289081.
“Which of the teaching approaches mentioned below do you consider as MOST LIKELY to contribute to the development of children’s CREATIVITY?”

<table>
<thead>
<tr>
<th>Building on children own experience</th>
<th>Fostering classroom discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encouraging different ways of recording</td>
<td>Fostering imagination</td>
</tr>
<tr>
<td>Encouraging problem finding</td>
<td>Relating science with every day life</td>
</tr>
<tr>
<td>Encouraging problem solving</td>
<td>Using questioning</td>
</tr>
<tr>
<td>Encouraging children to try out their own ideas</td>
<td>Using digital technologies</td>
</tr>
<tr>
<td>Fostering autonomous learning</td>
<td></td>
</tr>
</tbody>
</table>
a. Building on children's prior experiences
b. Fostering collaboration
c. Encouraging different ways of recording and expressing ideas – oral, visual, digital, practical
d. Encouraging problem finding – e.g. children asking questions
e. Encouraging problem solving – e.g. children solving practical tasks
f. Encouraging children to try out their own ideas in investigations
g. Fostering classroom discussion and evaluation of alternative ideas
h. Fostering imagination
i. Relating science to everyday life
j. Using questioning as a tool in science teaching
k. Using digital technologies with children for science teaching and learning
l. Fostering autonomous learning

Choose up to 3 answers

The project CREATIVE LITTLE SCIENTISTS has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement nº 289081.
Conclusions (1)

- The most interesting outcome of this set of questions resides in teachers’ evaluation that the cornerstone of science education is “building on children’s prior experiences” (73%).
- In 70% of the reported cases, teachers support a creative approach in science teaching by fostering imagination.
- The survey indicates that 62% of the participants encourage “problem finding – e.g. children asking questions” and “problem solving – e.g. children solving practical tasks”.

The project CREATIVE LITTLE SCIENTISTS has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement nº 289081.
Conclusions (2)

• The socio-educational context of science learning (“working in small groups”) and the importance to connect science teaching to everyday experience of children (“relating science to everyday life”) are ranked at the same level (57 %, and 55 % respectively).

• The collaboration takes in some cases the form of “fostering classroom discussion and evaluation of alternative ideas” with an occurrence of more than 95 %, under the “quite often” or “very often” conditions.
The issues of “integrating science with other curricular areas” and “using questioning as a tool in science teaching” obtained 48% of the votes as being the most often used approaches in science teaching.

“Open/unstructured play” proposed to children as a classroom activities is common in most of teaching practices (about 82% participants use them “quite often” or “very often”).

Only 37% of the participants estimate that very often they “encourage [children to use] different ways of recording and expressing ideas – oral, visual, digital, practical”.

The project CREATIVE LITTLE SCIENTISTS has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 289081.
Conclusions (4)

- No more than 35% of the respondents are concerned about the value brought to science learning process by “encouraging children to try out their own ideas in investigations”.
- At pre-school and primary school level, “physical exploration of materials” is a frequent practice (35% for “very often” versus 85% for “very often” combined with “quite often” use).
- Methods such as “teaching science from stories” and “outdoor learning activities” have similar weights in science teaching practice in Early Education (32% for the “very often” qualifier, and about 80% for “quite often & very often” one).
“Fostering autonomous learning” is an issue to Romanian teachers as 78% of the answers point “quite often & very often” use of this approach. This statement has to be amended by the less than 30% interest in applying this method as “very often”.

A surprising low number of teachers (20%) are “using digital technologies with children for science teaching and learning” “very often”. The number of those who base their science teaching activities on digital technologies “quite often and very often” represents 70% of the respondents.
Conclusions (6)

- In 60% of the reported situations children are took to “field trips and/or visits to science museums and industry” in relation to science teaching (“quite often or very often” related answers).
- In 140 answers, the “integrating science with other curricular areas” solution was selected, representing the opinion of 59% of the teachers. This can be interpreted as being a special context fostering creativity.
Conclusions (7)

• Almost 50% of the involved educators perceive “role and pretended role play” as factors endorsing the development of *creativity*. 42% of the teachers support “physical exploration of materials” as a method to teach science.

• “Open/unstructured play” is seen to be an important educational tool by 38% of the educators, evaluating this pedagogical approach nurturing *creativity*.

• Only 34% of the teachers rank “working in small groups” as a condition of interest in supporting training for *creativity*.

The project CREATIVE LITTLE SCIENTISTS has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement nº 289081.
Conclusions (8)

- Story telling in relation to science education is perceived as an opportunity for *creativity* to grow up (31% of the answers). 21%, respectively 24%, of the teachers expect an increase of children’s *creativity* through “field trips and/or visits to science museums and industry” and “outdoor learning activities”

- The respondents consider that drama use in science teaching can play a minor role in *creativity* build up (about 10% of the teachers embrace this method in promoting science in school). Less than 5% of the teachers refer to *science history* aspects when they teach science.
The authors acknowledge the financial support received from:

• the European Union Seventh Framework Programme (FP7/2007-2013) under area of activity 'Research and Coordination Actions on new methods in science education' (grant agreement no. 289081), project “Creative Little Scientists: Enabling Creativity through Science and Mathematics in Preschool and First Years of Primary Education”;

• the Romanian Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCDI) through the contract EU 176.
References

Thank you!